If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2y^2-16y-3=0
a = -2; b = -16; c = -3;
Δ = b2-4ac
Δ = -162-4·(-2)·(-3)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{58}}{2*-2}=\frac{16-2\sqrt{58}}{-4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{58}}{2*-2}=\frac{16+2\sqrt{58}}{-4} $
| |x|+5=15 | | 7•x-40=2 | | 4x^2-3x-72=0 | | 1/3•(x+1/2)=7/30 | | -500*1.22474487139*1.2+x*9.81*(45/2)=0 | | 500*1.22474487139*1.2+x*9.81*(45/2)=0 | | 500*1.22474487139*1.2+x*9.81*0.225=0 | | 500*1.22474487139*1.2+x=0 | | 500*1.22474487139=x | | -3(x-8)^2+27=-108 | | |6x-10|=6 | | 15y+10=10 | | (a+1)=3 | | -6(3x+10)=-12 | | 6x-1=-15+4x | | -6x+9=-2x+25 | | 5x-6(x+7)=8x | | 12(a-6)-11(5+a)=0 | | 4(4-7x)=72 | | -3x(2x+6)=6 | | 3+4x+7x=69 | | 0.1x-0.12=0.3x+0.2 | | 0.1x-0.12=0.3x+0.2= | | -2x+4+x=-7 | | 150-15x=0 | | 4(-3x-10)=-136 | | 7^x+5=12 | | 1-5x=7x-21 | | 8=5x+4x-1 | | 8+6x+2x=8 | | |2x-7|-15=-6 | | -6x-3=-2x+17 |